
DOMAIN MODEL AND MODELING WORKBENCH
FOR MODELING PDCA-MANAGEMENT SYSTEMS

Walter S.A. Schwaiger1, Christian Fischer-Pauzenberger1, Mathias Cammerlander1

1 Technische Universität Wien, Institute of Management Science, Theresianumgasse 27, 1040
Wien, Austria

{walter.schwaiger, christian.fischer-pauzenberger,
mathias.cammerlander}@tuwien.ac.at

Abstract. Plan-Do-Check-Act (PDCA)-management systems [1] are cybernetic
management systems that underly all management systems standards from the
International Organization for Standardization (ISO, https://www.iso.org). Fur-
thermore they play an essential role in the Resource-Event-Agent (REA)-
business management ontology [2] and in the OntoREA© Accounting and Fi-
nance Model [3]. The peculiarity of PDCA-management systems lies in the fact
that they contain structural and behavioural components so that they are diffi-
cult to model by using the UML language. In this article this modeling problem
is solved by the development of a PDCA-domain model (Ecore), i.e. a domain
specific language (DSL) and a corresponding PDCA-modeling workbench
(EMF) that allows the user to construct context-specific PDCA-applications.

Keywords: Model driven engineering, method engineering, meta-modeling
platforms, semantic PDCA-domain model, Ecore PDCA-domain model,
PDCA-DSL, PDCA-modeling workbench, Eclipse Modeling Framework
(EMF), Xtext grammar language.

Table of Content
1 Introduction ... 2
2 PDCA-management systems: Semantic PDCA-domain modeling.................. 3
3 PDCA-DSL: PDCA-domain model – Meta-modeling (EMF)......................... 4
4 PDCA-DSL: PDCA-modeling workbench (Eclipse Sirius) 5
5 Conclusion ... 6
References .. 7

https://www.iso.org/

2

1 Introduction

PDCA-management systems are cybernetic planning and control systems where at
the beginning of the planning period objectives are set in the plan activity and over
time the achievement of the objectives is controlled. The controlling consists of two
activities, i.e. the check activity where the measured performance is the feedback
information that is compared with the objective, and the act activity where the result-
ing deviation between the objective and the performance determines the control input
for the act activity. As can already be seen from this informal definition, the PDCA-
management systems contains behavioral components in form of activities as well as
structural components in form of the information objects that are exchanged between
the activities.

This peculiarity of PDCA-management systems makes it difficult to model them
by using UML modeling tools as these tools are specialized either on the structural
part (e.g. UML class diagrams: UML-CD) or on the behavioral part (e.g. UML activi-
ty diagrams: UML-AD). In the literature both approaches where applied so far. By
modeling PDCA-management systems with the UML-AD language [1] the PDCA
activities are modelled as UML activities together with the accompanying flows of
the corresponding information objects which are modelled as UML objects. By mod-
eling PDCA-management systems with the UML-CD language [2] both components,
i.e. the structural and the behavioral components are modeled as UML classes.

The conceptual modeling of the PDCA-management systems is surely beneficial
for understanding and communication purposes. But furthermore it should also pro-
vide a solid foundation for the model driven engineering of management systems
applications. To attain this, an executable domain specific language (DSL) with a
corresponding modeling workbench should be established.

The establishment of such an executable DSL for the PDCA-domain (PDCA-DSL)
is the primary research objective of this article. In order to achieve this objective a
meta-modeling approach [4] is taken and an adequate modeling method is chosen.
Modelling methods consists of two components: a modelling technique, which is di-
vided in a modelling language and a modelling procedure, and mechanisms & algo-
rithms (modeling infrastructure) working on the models described by the modelling
language. [5, p.183]. The modeling language consists of an abstract syntax, a concrete
syntax (visual notation) and the semantics. For the definition of the abstract syntax the
graphical editor “Ecore Tools” will be used. Ecore Tools is based upon the meta-
meta-modeling language [6] “Ecore” and it is available in the “Eclipse Modeling
Framework” (EMF) [4]. This Java-based modeling method is chosen as it allows the
establishment of the meta-model for the PDCA-domain (PDCA-DSL) and the corre-
sponding PDCA-modeling workbench (executable DSL).

The article is structured as follows: In the next section two semantic PDCA-
domain models are presented. Next to that the PDCA-domain model (Ecore), i.e. the
PDCA-DSL is constructed. After that the establishment of the PDCA-modeling
workbench is addressed. In the final section the paper is summarized and concluded.

3

2 PDCA-management systems: Semantic PDCA-domain
modeling

So far, the semantic PDCA-domain was modelled in the literature in two ways. In
Fig. 2 (Fig. 3) the modeling in the UML-AD (UML-CD) language is shown.

<<Do>>
Business Process

<<Objective>>
(1a) Standard of

Performance

<<Performance>>
(2a) Realisation

 <<Measure>>
(2) Measuring

<<Deviation>>
(3a) Variance

periodic

<<Plan>>
(1) X-MGT
Planning

<<Control Input>>
(4a), (4b) Corrective

Instructions

M
an

ag
em

en
t S

ys
te

m
B

us
in

es
s

S
ys

te
m

C
ontrol S

ystem
:

S
upervised C

losed/O
pen D

ouble Loop C
ontrol

<<Control-Rules>>
(1d) Correction- and

Adaptation-Rules

NOK

OK

P
lanning

S
ystem

O
perating
S

ystem

<<Supervisory Control>>
(8) System Monitoring

<<Supervisory Control>>
(7) Control Monitoring

<<Act>>
(4) Selection of Corrective

Instructions

 <<Check>>
(3) Comparison

<<Do-Rules>>
(1b) Operating

Rules

<<Control Input>>
(5a), (5b) Adaptive

Instructions

<<Act>>
(5) Selection of Adaptive

Instructions

<<Measure-Rules>>
(1e) Measuring

Rules

<<Supervisory Control>>
(6) Process Monitoring

<<State Variable>>
(2b) Realisation

<<Control-Rules>>
(1c) Checking-

Rules

<<Plan-Rules>>
(1f) Planning

Rules

Fig. 1: Semantic PDCA-domain model [1] – UML-AD language

◀ use

1st order control

Do

Check

Plan

Act

Plan
Policy

Measure

Do
Policy

Check
Policy

Act
Policy

Measure
Policy

 ◀ policy setting (2)

Performance

Deviation

Objective

Control
Input

State

 ◀ apply

 ◀ apply

 ◀ apply

 ◀ apply

Objective

Setting ▶
(4)

◀ apply (3)

2nd order control => Objective adjustment
Internal learning => Check Policy adjustment
Systemic learning => Do Policy adjustment

derive ▶

◀ use

measure ▶

◀ use

◀ use

measure ▶

select ▶

deliver ▶

Management
System
Type

◀ type
Setting

(1)

single

loop ▶
double

loop ▶

Fig. 2: Semantic PDCA-domain model [2] – UML-CD language

4

The semantics describes the meaning of a modelling language (PDCA-DSL) and
consists of a semantic domain and the semantic mapping. The semantic domain de-
scribes the meaning by using ontologies (PDCA-domain in Fig. 2 and Fig. 3), mathe-
matical expressions etc. The semantic mapping connects the syntactical constructs
with their meaning defined in the semantic domain. [5, p. 186].

The semantic PDCA-domain models identify the elements that exist in PDCA-
management systems and equivalently express their meanings. Of special importance
is the interconnection between the activities and the informational object flows. E.g.,
in the Plan activity (3) the Plan Policy is applied to set (1) the management
system type, (2) the policies for the Do, Measure, Check and Act activities and (4)
the Objective. Over time (sand clock symbol) the Performance is measured,
compared with the Objective and the Deviation is determined that induce a
corresponding Control Input.

3 PDCA-DSL: PDCA-domain model – Meta-modeling (EMF)

After having specified the semantic domain it can be mapped with the syntactical
constructs of the abstract syntax. In order to establish an executable PDCA-DSL the
Eclipse Modelling Framework (EMF) is used [7]. It supports the Ecore standard,
which is a simplified implementation of MOF. Ecore is currently the de facto stand-
ard for metamodelling, and is used in the Eclipse implementation of UML, along with
many other general-purpose and domain-specific language (DSL) tools. [4, p.401].

Fig. 3: PDCA-domain model excerpt (PDCA-DSL) – Ecore meta-modeling language

5

Fig. 3 shows an excerpt from the PDCA-meta-model – in Ecore’s EMF notation –
which defines the abstract syntax for the PDCA-domain. It was produced with the
graphical editor Ecore Tools (https://wiki.eclipse.org/Sirius/Tutorials/Do-
mainModelTutorial). This meta-model is formulated in the Ecore meta-modeling
language, it represents the PDCA-domain model and defines the PDCA-DSL. The
PDCA-DSL is based upon a graph-theoretical foundation by using Node and Edge
constructs. The peculiarity of PDCA-management systems is integrated by the inclu-
sion of two different node types, i.e. the Activity node that covers the behavioural
components and the ObjectNode for covering the structural components.

4 PDCA-DSL: PDCA-modeling workbench (Eclipse Sirius)

The concrete syntax for the PDCA-DSL is established by the diagram editor of
“Eclipse Sirius” (https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial). Further-
more, this editor allows the building of the PDCA-modeling workbench. This work-
bench is the tool that supports the user in constructing a specific PDCA-management
system for the context under consideration. In Fig. 4, exemplarily a “closed double
loop management system” – e.g. like the Balanced Scorecard management system
from Kaplan/Norton – is generated with the workbench to demonstrate its applicabil-
ity. Furthermore, the example PDCA model shows that the primary research objective
of the article is achieved as the structural and behavioral peculiarities of PDCA-
management systems are fully covered in the PDCA-DSL and they are provided to
the user (modeler) of the corresponding PDCA-modeling workbench.

Fig. 4: PDCA-modeling workbench (Sirius) – Closed double loop management system

https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial

6

5 Conclusion

The primary research objective of this article was the establishment of a PDCA-
DSL and a corresponding PDCA-modeling workbench based upon the semantic
PDCA-management system models that are expressed in the non-executable UML-
AD and the UML-CD language. For this purpose a two-step approach was taken:
Firstly, the semantic content of the two equivalent PDCA-domain models was
mapped into the abstract syntax that constitutes the PDCA-meta-model and describes
the PDCA-DSL. This mapping was done by the construction of the PDCA-meta-
model in the graphical editor Ecore Tools which is available in the Eclipse Modeling
Framework and is based upon the meta-modeling language Ecore. Secondly, for the
abstract syntax a concrete syntax (visual notation) was constructed in the diagram
editor of the Sirius Eclipse plug-in, and upon this syntax a graphical designer with
palette tools for the PDCA-modeling workbench was established.

The PDCA-DSL (meta-model, abstract syntax) and the corresponding PDCA-
modeling workbench include the peculiarity of PDCA-management systems of cover-
ing structural and behavioural components at the same time. This match shows that
the primary research objective is met. For demonstrating the functioning of the
PDCA-modeling workbench a closed double loop management system was created.

It has to be mentioned that the current version of the PDCA-modeling workbench
is limited to visual modelings only, so that currently no computational functionalities
are available. In the PDCA-DSL (Fig. 3) the inclusion of such functionalities is al-
ready foreseen. This can be seen by the node FunctionCall that is attached to the
ObjectNode so that it is also available in the Policy node. This means, the poli-
cies can be equipped with functions for performing special tasks. Such functions are
e.g. the calculations needed in the PDCA activities for the dynamic replication of
option contracts [3].

Such an integration of computational functionalities can be achieved in further re-
search by the “Xtext” grammar language (https://www.eclipse.org/Xtext/documenta-
tion/301_grammarlanguage.html). This language is also related to the Ecore modeling
language. Consequently, it can “communicate” with the PDCA-DSL and can provide
the additional behavioural functionalities. Building a domain-specific language (DSL)
for structural parts of an application has always been rather easy with Xtext. But
structure alone is not sufficient in many cases. When it comes to the behavioral as-
pects users often fall back to implementing them in Java. The reasons are obvious:
expressions and statements are hard to get right and extremely complex and therefore
costly to implement. This document introduces and explains a new API, which allows
reusing predefined language constructs such as type references, annotations and fully
featured expressions anywhere in your languages... (https://www.eclipse.org/Xtext/-
documentation/201_sevenlang_introduction.html).

https://www.eclipse.org/Xtext/documentation/201_sevenlang_introduction.html
https://www.eclipse.org/Xtext/documentation/201_sevenlang_introduction.html

7

References

1. Abmayer, M., Schwaiger, W.S.A.: Accounting and management information
systems – a semantic integration. In: Weippl, E., Indrawan-Santiago, M.,
Steinbauer, M., Kotsis, G., Khalil, I. (ed.) 15th International Conference on
Information Integration and Web-based Application and Services (iiWAS
2013). pp. 345–351. ACM, ISBN 978-1-4503-2113-6, Vienna, Austria
(2013).

2. Schwaiger, W.S.A.: REA Business Management Ontology : Conceptual
Modeling of Accounting , Finance and Management Control. In: España, S.,
Ivanović, M., and Savić, M. (eds.) CAiSE’16 Forum at the 28th International
Conference on Advanced Information Systems Engineering. pp. 41–48.
http://ceur-ws.org, Ljubljana, Slovenia (2016).

3. Fischer-Pauzenberger, C., Schwaiger, W.S.A.: OntoREA© Accounting and
Finance Model: Hedge Portfolio Representation of Derivatives. In:
Buchmann, R.A. and et al. (eds.) 11th IFIP WG 8.1. Working Conference,
PoEM 2018. pp. 372–282. Springer Nature Switzerland, Vienna, Austria
(2018).

4. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: A tutorial on metamodelling for
grammar researchers. Sci. Comput. Program. 96, 396–416 (2014).

5. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Bauknecht, K., Min
Tjoa, A., and Quirchmayer, G. (eds.) Proceedings of the Third International
Conference EC-Web 2002 – Dexa 2002. pp. 182–203. LNCS 2455, Springer,
Berlin, Heidelberg, Aix-en-Provence, France (2002).

6. Sutîi, A.M., Brand, M. Van Den, Verhoeff, T.: Exploration of modularity and
reusability of domain-specific languages : an expression DSL in MetaMod.
Comput. Lang. Syst. Struct. 51, 48–70 (2018).

7. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF - Eclipse
Modeling Framework. Addison-Wesley, Upper Saddle River, NJ et al. (2009).

	1 Introduction
	2 PDCA-management systems: Semantic PDCA-domain modeling
	3 PDCA-DSL: PDCA-domain model – Meta-modeling (EMF)
	4 PDCA-DSL: PDCA-modeling workbench (Eclipse Sirius)
	5 Conclusion
	References

