

 1

Demonstrating the importance of well-defined design
patterns in smart contract development

Michaël Verdonck
 Faculty of Economics and Business Administration, Ghent University;

michael.verdonck@ugent.be;

Abstract.This paper demonstrates how the characteristics of blockchain
lead to different design concepts and approaches in developing smart contracts
compared to common design practices. Since blockchain technologies and smart
contracts are a rather new development in the domain of information systems,
little research has yet been performed in how such blockchain-based systems
should be designed and integrated with existing technologies. Smart contract de-
velopment and deployment will be a key feature in the creation of such block-
chain-based systems. Therefore, it is the goal of this paper to briefly demonstrate
how two unique characteristics of the blockchain – i.e. immutability and visibility
– strongly affect the way a smart contract has to be developed compared to com-
mon development approaches. By increasing our understanding of these unique
characteristics and how smart contracts are used and how they are implemented,
we can facilitate future research efforts to design for instance new domain-spe-
cific languages that can aid developers with the specific challenges and vulnera-
bilities of smart contract development.

1 Introduction

While originally introduced as a technology to support new forms of digital currency
[1], blockchain has evolved as a promising foundation to support any type of transac-
tions in society [2, 3]. A blockchain can be seen both as a distributed database recording
transactions between parties, as well as a computational platform to execute small pro-
grams – referred to as smart contracts [4]. More specifically, smart contracts can carry
and conditionally transfer digital assets or tokens between parties. Since smart contracts
are permanently stored on the blockchain, they can be publicly viewed and read by
anyone, and can therefore be executed in a predictable and transparent way. These par-
ticular features of the blockchain technology enable certain advantages such as tracea-
bility, transparency and enhanced security [5]. Even though blockchain has been stated
(or hyped) in the past couple of years as a stand-alone system that will provide a pleth-
ora of solutions to different problems, the blockchain technology is more likely to
evolve in cooperation and co-existence with current information technologies and sys-
tems. Smart contract development and deployment will be a key feature in the creation
of such blockchain-based systems.

However, due to the blockchain’s singular features, developing smart contracts en-
tails a rather different approach and design paradigm compared to developing scripts

 2

on more traditional and centralized information systems [6]. Since blockchain technol-
ogies and smart contracts are a rather new development in the domain of information
systems, little research has yet been performed in how such blockchain-based systems
should be designed and integrated with existing technologies. Therefore, it is the goal
of this paper to briefly demonstrate how two unique characteristics of the blockchain –
i.e. immutability and visibility – strongly alter the way a smart contract has to be de-
veloped compared to common development approaches. By exploring the unique char-
acteristics of blockchain technologies, we can increase our understanding of this new
technology, and determine the different design approaches that will result in efficient
and secure blockchain-based systems.

2 Characteristics of Smart Contract Development

To demonstrate the impact of certain blockchain features on the development of smart
contract scripts, this paper will focus on the Ethereum blockchain ecosystem. The rea-
son for this particular blockchain is that Ethereum is the most prominent blockchain for
smart contract development with a rich, Turing-complete development language called
Solidity. Moreover, Ethereum is a public blockchain, as such possessing the singular
and challenging features such as immutability and complete public visibility, in contrast
to some private blockchains [7].

2.1 Immutability

A fundamental characteristic of blockchains – and hence smart contracts that are being
deployed on the blockchain – is that they are immutable, meaning that they can never
be modified or updated again. The initial code you deploy to a contract is there to stay,
permanently, on the blockchain. This ensures some of the key advantages that block-
chain has to offer, e.g. availability, a trusted decentralized ledger and traceability. How-
ever, this also results in several challenges when creating smart contracts, such as
blockchain memory management or control. In order to reduce and optimize storage as
much as possible, the Ethereum blockchain charges users to pay every time a function
is executed, using a currency called gas. Users buy gas with Ether (the currency on
Ethereum) and have to spend ETH in order to execute functions on a smart contract.
The amount of gas required to execute a function depends on the complexity of the
respective function. Each individual operation has a gas cost based roughly on how
much computing resources will be required to perform that operation – e.g. writing to
storage is much more expensive than adding two integers. The total gas cost of your
function is the sum of the gas costs of all its individual operations. Since the execution
of functions in Solidity costs real money for its users, code optimization is much more
important in Solidity than in other programming languages. If the program code of a
smart contract is carelessly written, users are going to have to pay a premium to execute
its functions – which could add up to large, unnecessary fees across thousands of users.

As a result, developing a smart contract in Solidity requires careful consideration of
the kinds of types one will use for their variables. For instance, when defining more

 3

complex data types such as Structs (which are the equivalent of objects in object-ori-
ented programming languages such as Java), the choice of its properties can make a
considerable difference. In the programming examples below, the Struct Person in ex-
ample A is defined by a regular data type uint (equivalent of an Integer), which is stored
to the Ethereum blockchain as 256 bits. Example B on the other hand explicitly defines
a sub-type of uint that only requires 8 bits of storage and will save a substantial amount
of gas when the number of users gain extensively.

 // Example A // Example B
 struct Person { struct Person {
 uint age; uint8 age;
 string name; string name;
 } }

Moreover, the Ethereum blockchain differentiates between functions that for example
write to the blockchain, or that only perform read tasks on the blockchain. Conse-
quently, functions in a smart contract can be declared as a read-only function by adding
a view keyword to the function. This particular emphasis of the Ethereum blockchain
to optimize storage as much as possible concerning functions and data types can also
lead to counter-intuitive programming patterns. For instance, in most programming lan-
guages, repeatedly looping over large data sets is computationally inefficient. However,
in Solidity this approach is much more desirable than using storage on the blockchain.
For smart contract development, it makes more sense to call view functions that iterate
every time again over the blockchain then for example simply saving the data in an
array as a variable for quick lookups – which would be the more logical approach in
standard program logic.

2.2 Public Visibility

A second major challenge concerning the development of blockchain applications and
smart contracts is that all data that is stored on the blockchain is publicly visible by
anyone. Since smart contracts are deployed on the blockchain, this means that the entire
program code of a contract can be viewed by anybody. While this holds certain ad-
vantages – e.g. participants of a smart contract can always verify the code themselves
and therefore check what kind of contract they are interacting with – this also results in
certain challenges. One major challenge is related to the security of a smart contract. In
the case of a crucial flaw in your contract code, there is no way to adopt or modify the
contract later. The only solution would be to tell your users to start using a different
smart contract that has the corrected code to the flaw. Evidently, this causes confusion
and hinderance for users and should only be considered as a last-resort solution. In order
to cope with these issues, smart contract developers need to heavily test their program
code before deploying it to the blockchain.

Another consequence of the public visibility of blockchains is that functions – those
of which are declared public – can now be called by anyone. However, certain functions
require restricted access, since they can handle for instance sensitive information, mon-
etary value or perform updates on the contract. To handle such specific cases, a unique

 4

practice in Solidity emerged where functions can be made Ownable – meaning that
certain functions have an owner who has special privileges. The program code below
demonstrates how a contract can implement ownership. Briefly explained, the person
who deploys the smart contract on the blockchain is the first (and only) one to call the
constructor of the smart contract. As a result, this person is assigned as ‘owner’ of the
smart contract and can execute certain that are for instance only assigned to the owner.
The function isOwner() can for example be deployed to verify that a certain user who
calls a protected function, is in fact the owner of the contract.

// Enabling ownership of functions in Smart Contracts
constructor() internal {
 _owner = msg.sender;
}

function isOwner() public view returns(bool) {
 return msg.sender == _owner;
}

3 Conclusion

In this paper, we demonstrated how the characteristics of blockchain lead to different
design concepts and approaches in developing smart contracts compared to common
design practices. For instance, due to immutability, it makes more sense to compose a
new search query on the entire blockchain than to store instances or objects in an array.
Moreover, the public visibility of blockchains have led to new concepts such as own-
ership in order to safeguard certain functions in a smart contract from being called by
anyone. While this paper only briefly discussed the characteristics of immutability and
visibility, their impact and influence on the design of smart contracts can be examined
much more extensively. Additionally, this paper did not review other characteristics of
the blockchain and smart contracts such as external dependencies, payable functionali-
ties and multi-signature operations. By increasing our understanding of these unique
characteristics and how smart contracts are used and how they are implemented can
facilitate future research efforts to design for instance new domain-specific languages
that aid developers with the challenges and vulnerabilities of smart contract develop-
ment as discussed above. An example of such a research effort is the one by Gal &
McCarthy1, where they defined a single agreed structure for the development of smart
contracts based upon the REA ontology [8]. As more blockchain-based systems and
applications will be developed in the coming years, the importance of such clearly de-
fined development environments, design patterns and modeling languages will only
increase.

1 http://ceur-ws.org/Vol-2239/article_11.pdf

 5

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. 1–9 (2008).
2. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: Using blockchain

for medical data access and permission management. Proc. - 2016 2nd Int.
Conf. Open Big Data, OBD 2016. 25–30 (2016).

3. Karamitsos, I., Papadaki, M., Barghuthi, N.B. Al: Design of the Blockchain
Smart Contract: A Use Case for Real Estate. J. Inf. Secur. 09, 177–190 (2018).

4. Staples, M., Chen, S., Falamaki, S., Ponomarev, A., Rimba, P., Tran, A.B.,
Weber, I., Xu, X., Zhu, L.: Risks and opportunities for systems using
blockchain and smart contracts. Data61 (CSIRO), May. (2017).

5. Bartoletti, M., Pompianu, L.: An Empirical analysis of smart contracts:
Platforms, applications, and design patterns. Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 10323
LNCS, 494–509 (2017).

6. Wöhrer, M., Zdun, U.: Design Patterns for Smart Contracts in the Ethereum
Ecosystem. (2017).

7. Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., Rimba,
P.: A Taxonomy of Blockchain-Based Systems for Architecture Design. In:
2017 IEEE International Conference on Software Architecture (ICSA). pp.
243–252. IEEE (2017).

8. McCarthy, W.E.: The REA Accounting Model - A Generalized Framework for
Accounting Systems in a Shared Data Environment. Account. Rev. 57, 554–
578 (1982).

