Conceptual Models as **Ontological Contracts**

Giancarlo Guizzardi CORE/UNIBZ, Italy (together with <u>Nicola Guarino</u> and the <u>NEMO Group</u>)

By Tom Gould

Real-World (**Ontological**) **Semantics**

X

Formal Semantics

Another look at data

by GEORGE H. MEALY Computer Consultant Scituate. Massachusetts

INTRODUCTION

We do not, it seems, have a very clear and commonly agreed upon set of notions about data—either what they are, how they should be fed and cared for, or their relation to the design of programming languages and operating systems. This paper sketches a theory of data which may serve to clarify these questions. It is based on a number of old ideas and may, as a result, seem obvious. Be that as it may, some of these old ideas are not common currency in our field, either separately or in combination; it is hoped that rehashing them in a somewhat new form may prove to be at least suggestive.

To begin on a philosophical plane, let us note that we usually behave as if there were three realms of interest in data processing: the real world itself, ideas about it existing in the minds of men, and symbols on paper or some other storage medium. The latparticular ontology, we can avoid a quarrel by adopting the nominalist's position.

Our plan of attack is to indicate the nature of the theory of relations, based on the example of genealogical data. This will lead immediately to formulation of our notions about data in general, including rather precise definitions of concepts such as data structure, list processing, and representation. These notions are used in the second part of the paper as the basis for some remarks and suggestions concerning language and system design.

Toward a theory of data

Relations

To fix our ideas, consider the following example of genealogical data, taken from Reference 2:

"data are fragments of **a theory of the real world**, and data processing juggles representations of these fragments of theory...The issue is **ontology**, or the question of what exists."

(G.H. Mealy, Another Look at Data, 1967)

Semantic Interoperability

relating different **worldviews**, i.e., different **conceptualizations** of reality

Having lost one legal case to insurers, the towers' leaseholder wins a second

Dec 9th 2004 | NEW YORK | From the print edition

From the print edition (S) Timekeeper

Like { 0

SEVEN months ago, a jury in lower Manhattan ruled that under the forms covering insurance of the World Trade Centre, the striking of the twin towers by two aeroplanes constituted only one "occurrence". Consequently, Larry Silverstein, who had recently leased the Trade Centre complex, was entitled to one payment, not two—a difference of \$3.5 billion. On December 6th, in the same courtroom with the same judge presiding, another jury decided that under the documents used by nine other insurers the attacks were two events, thus qualifying for two payments. The verdict will provide Mr Silverstein with as much as \$1.1 billion extra for rebuilding the Trade Centre. It will also ensure that he remains in control of the project.

Why, after two weeks of deliberation, did the second jury come to a different conclusion from the first? The main reason lay in the preliminary paperwork signed by the underwriters. Because the Trade Centre had been leased to Mr Silverstein only weeks before the attack, the final insurance contracts had yet to be signed. The insurers in the first trial had signed a form with a much tighter definition of an "occurrence" than in the form signed by the nine insurers in the second trial. In addition, the insurance companies' claim that they always define FaceTime e" precisely may have been undermined by testimony that they had been flexible in other cases—for example, involving sequences of

Follow The Economist

There is no doubt about the brute reality. The issue is **interpreting** that part of **reality according to a** certain **system of categories**

There are **multiple views on reality** that can conflict and unless we are fully aware of their distinctions, we cannot safely harmonize those views

The is no experiment that can be done to settle these conflicts. It can only be resolve by **conceptual clarification** and **meaning negotiation** relying on **a prioristic** system of categories

Ontology as a Calculus of Content

- For that we need a *a prioristic* system of categories and their ties addressing issues of Identity, Unity (Parts and Wholes), Individuation, Change, Classification and Taxonomic Structures, Dependence (Existential, Historical, Relational, Notional), Causality, Essential and Accidental Characterization
- We need Formal Ontology and Ontological Analysis

Ontology-Driven Conceptual **Modeling**

A discipline aiming at developing ontology-based methodologies, computational tools and **modeling languages** for the area of Conceptual Modeling

UFO

(Unified Foundational Ontology)

- Over the years, we have built a Philosophically and Cognitively well-founded Ontology to contribute to the general goal of serving as a Foundation for Conceptual Modeling
- This Ontology has been used to as a theory for addressing may classical conceptual modeling constructs such as Object Types, Identity and Taxonomic Structures (CAISE 2004, CAISE 2007, CAISE 2012, Synthese 2015, ER 2018), Part-Whole Relations (CAISE 2007, CAISE 2009, FOIS2010, CAISE 2011), Intrinsic and Relational Properties (ER 2006, ER 2008, ER 2011, CAISE 2015, DKE 2015, ER 2018), Weak Entities, Attributes and Datatypes (ER 2006), Events (ER 2013, BPM 2016), Multi-Level Modeling and Powertypes (JOWO 2015, ER 2015, DKE 2017, ER 2018), etc...

Kinds

Anti-Rigid Sortals (**Roles** and **Phases**)

Anti-Rigid Sortals (**Roles** and **Phases**)

Rigid Mixins

Anti-Rigid Mixins

Anti-Rigid Mixins

Solution

- 1. Characterizing the difference between:
 - NATURAL TYPE/KIND (e.g., **PERSON**) = **RIGID SORTAL**
 - ROLE (e.g., SINGER, ECONOMIST, BRITISH CITIZEN, KNIGHT OF THE BRITISH EMPIRE) = ANTI-RIGID + RELATIONALLY DEPENDENT SORTAL
 - PHASE (e.g., LIVING PERSON, ADULT MAN) = ANTI-RIGID + RELATIONALLY INDEPENDENT SORTAL
 - MIXIN (e.g., CULTURAL HERITAGE ENTITY, PHYSICAL ENTITY, INSURABLE ITEM)? = MIXIN

Role

- All instances of a given ROLE are of the same KIND (e.g., all Students are Person)
- All instances of a ROLE instantiate that type only contingently (e.g., no Student is necessarily a Student)
- Instances of a KIND instantiate that ROLE when participating in a certain RELATIONAL CONTEXT (e.g., instances of Person instantiate the Role Student when enrolled in na Educational Institution)
- A ROLE cannot be a supertype of a Rigid Type

WORLD W

WORLD W

WORLD W'

WORLD W'

We run into a logical contradiction!

Role

- All instances of a given ROLE are of the same KIND (e.g., all Students are Person)
- All instances of a ROLE instantiate that type only contingently (e.g., no Student is necessarily a Student)
- Instances of a KIND instantiate that ROLE when participating in a certain RELATIONAL CONTEXT (e.g., instances of Person instantiate the Role Student when enrolled in na Educational Institution)
- A ROLE cannot be a supertype of a Rigid Type

The Emerging Role Pattern

The Emerging Phase Pattern

Problem (2)

 Suppose that I want to represent that the ROLE Customer can be played by entities of different KINDS, namely, People and Organizations. How to relate the ROLE and its *allowed types* using subtyping relations?

A Classic Problem

A Possible Alternative?

«roleMixin» Customer

The emerging **RoleMixin** Pattern

📹 OLED File Edit Di	agram View	Project	Verification	Validation	Transformation	Help	④ * 중 ◀	1 35% 💶 Fri 20:00	Giancarlo Guizzardi C	
00					OLED - ER2014.	oled				
📡 Toolbox	Editor								Project Browser	
Elements							4			
▼ Patterns		미 아)		1 🖷 📽 🤇) 🔳 🔍 🔍 🔍	100%	M 🗳 🏹	1 	 OLED Project OLED Project Diagrams 	
Pointer								1	🕨 🗹 🥁 Constraints	
A Principle of Identity									🗹 🔤 Model	
A Relator										
🚢 RoleMixin										
	•									
								Ĭ		
					Walasana 🖉 🖉					
Derived Patterns				L	weicome Diagra	amu x				
Derived Patterns					Welcome 📑 Diagra	am0 x				

Complexity Management: Viewpoint Extraction, Modularization and Abstraction

Valid state of affairs according to the representation

Intended state of affairs according to the Conceptualization

Over-constraining

Conceptual Model = Structure + Axiomatization (Ontological Commitment)

Conceptual Model = Structure + Domain-Independent Axioms + Domain-Specific Axioms

OntoUML Model Benchmark

- Model benchmark with 56 models
- Models in domains such as Provenance in Scientific Workflow, Public Cloud Vulnerability, Software Configuration Management, Emergency Management, Services, IT Governance, Organizational Structures, Software Requirements, Heart Electrophisiology, Amazonian Biodiversity Management, Human Genome, Optical Transport Networks, Federal Government Organizational Structures, Normative Acts, and Ground Transportation Regulation

The Emerging Anti-Pattern: Relation Between Overlapping Types (**RelOver**)

The Emerging Anti-Pattern: Relation Specialization (**RelSpec**)

(a)

(b)

Anti-Pattern Catalogue

- Association Cycle
- Binary Relation Between Over. Types
- Deceiving Intersection
- Free Role Specialization
- Imprecise Abstraction
- Multiple Relational Dependency
- Part Composing Over. Roles
- Whole Composed by Over. Parts
- Relator Mediating Over. Types
- Relation Composition
- Relator Mediating Rigid Types
- Relation Specialization
- Repeatable Relator Instances

- Relationally Dependent Phase
- Generalization Set With Mixed Rigidity
- Heterogeneous Collective
- Homogeneous Functional Complex
- Mixin With Same Identity
- Mixin With Same Rigidity
- Undefined Formal Association
- Undefined Phase Partition

Anti-Patterns (AP)	AP Occurrences	Relevant Model Construct (RMC)	RMC /AP Ratio	% of Qualified Models with AP Occurrence
RelSpec	817	Association	4.92	48.15%
ImpAbs	758	Association	5.30	72.22%
AssCyc	1809	Association	2.22	92.59%
RelOver	149	Relator	8.08	25%
RepRel	319	Relator	3.77	64.58%
BinOver	224	Association	17.93	48.15%

Anti-Patterns (AP)	AP Occurrences	Relevant Model Construct (RMC)	RMC /AP Ratio	% of Qualified Models with AP Occurrence	
RelSpec	817	Association	4.92	48.15%	
ImpAbs	758	Association	5.30	72.22%	
AssCyc	1809	Association	2.22	92.59%	
RelOver	149	Relator	8.08	25%	
RepRel	319	Relator	3.77	64.58%	
BinOver	224	Association	17.93	48.15%	

Anti-Patterns (AP)	AP Occurrences	Relevant Model Construct (RMC)	evant Model Construct RMC /AP Ratio (RMC)	
RelSpec	817	Association	4.92	48.15%
ImpAbs	758	Association	5.30	72.22%
AssCyc	1809	Association	2.22	92.59%
RelOver	149	Relator	8.08	25%
RepRel	319	Relator	3.77	64.58%
BinOver	BinOver 224		17.93	48.15%

Anti-Patterns (AP)	AP Occurrences	Relevant Model Construct (RMC)	RMC /AP Ratio	% of Qualified Models with AP Occurrence
RelSpec	817	Association	4.92	48.15%
ImpAbs	758	Association	5.30	72.22%
AssCyc	1809	Association	2.22	92.59%
RelOver	149	Relator	8.08	25%
RepRel	RepRel 319 Relator		3.77	64.58%
BinOver 224		Association	17.93	48.15%

Anti-Pattern	#Occ.	#Error	#Error / #Occ.	#Refac. /#Error
RelSpec	315	279	88.6%	97.1%
RepRel	221	57	25.8%	84.2%
RelOver	124	70	56.5%	77.1%
BinOver	74	31	41.9%	74.2%
AssCyc	20	14	70.0%	71.4%
ImpAbs	125	11	8.8%	27.3%
Total	879	462	52.56%	88.53%

Anti-Pattern		#Occ.	#Error	#Error / #Occ.	#Refac. /#Error
RelSpec		315	279	88.6%	97.1%
	RepRel	221	57	25.8%	84.2%
	RelOver	124	70	56.5%	77.1%
	BinOver	74	31	41.9%	74.2%
	AssCyc	20	14	70.0%	71.4%
	ImpAbs	125	11	8.8%	27.3%
	Total	879	462	52.56%	88.53%

ontext _'Criminal Investigation'

Relator With Overlapping Roles						
Relator: Criminal I	Investigation					
Customizing Disjoin	nts Roles:			Add		
Lead Detective	Witness	Detective	Suspect			
				E		
		- f T-U-		-		
Disjoint	Exclusive Exclusive from Table Overlapping Disjoint Disjoint from Table				≡	
"C	riminal Investigation" S	zer OCL Solu	(at least) ution		•	
	1 🗹 🗸	✓ ₽ ,	/ M	€ ℝ]]
1 context _'C 2 inv: self.w 3 4 context _'C	riminal Investig itness.oclAsType riminal Investig	gation' e(Person)->asS gation'	et()->inte	rsection(se	lf.	f.detective.oclAsType(Person)->asSet())->size()=0
5 inv: self.w 6 7 context _'D 8 inv: not se	itness.oclAsType etective' lf.oclIsTypeOf(S	e(Person)->asS Suspect)	et()->inte	rsection(se	1f.	f.suspect.oclAsType(Person)->asSet())->size()=0
Properties	Warnings 🛕 Errors	Output	OCL Editor			

"Few modelers, however,

have had the experience of subjecting their models to continual, automatic review. Building a model incrementally with an analyzer, **simulating** and checking as you go along, is a very different experience from using pencil and paper alone. The first reaction tends to be amazement: modeling is much more fun when you get instant, **visual feedback**. Then the sense of **humiliation** sets in, as you discover that **there's almost nothing you can do right**."

> (Daniel Jackson, Software Abstractions : Logic, Language, and Analysis, 2006)

The Humble Modeler

[What] I have chosen to stress in this talk is the following. We shall do a much better modeling job in the future, provided that we approach the task with a full appreciation of its tremendous complexity,...,provided we respect the intrinsic limitations of the human mind and approach the task a Very Humble Modelers

(paraphrasing Dijkstra's Humble Programmer, 1972)

For a primer into UFO and OntoUML...

- GUIZZARDI, G., Ontological Patterns, Anti-Patterns and Pattern Languages for Next-Generation Conceptual Modeling, 33rd International Conference on Conceptual Modeling (ER 2014), Atlanta, USA.
- GUIZZARDI, G., WAGNER, G., ALMEIDA, J.P.A., GUIZZARDI, R.S.S., Towards Ontological Foundations for Conceptual Modeling: The Unified Foundational Ontology (UFO) Story, Applied Ontology, IOS Press, 2015.
unibz

gguizzardi@unibz.it